Revision Notes

- Motion : An object which changes its position with respect to a fixed point is said to be in motion.
- Motion is a relative term : An object at rest with respect to one object may also be in motion with respect to another object.
- Reference point : A fixed point with respect to which an object changes its position is known as a reference point.
- Distance : The length of actual path between the initial position and the final position of a moving object or body is known as distance travelled by the particle.
- Displacement : The shortest distance between the initial and final positions of a moving object or body in a direction from initial to the final position of the particle is known as displacement of the particle.
- Units of distance and displacement : SI unit of distance and displacement is metre (m).
- Distance travelled by a body is always positive.
- Displacement of body may be positive, negative or zero.
- Ratio of the magnitude of displacement and the distance is equal to less than 1.
- Uniform Motion : The motion of a body is said to be uniform if (i) it moves along a straight line and (ii) it covers equal distance in equal intervals of time, how-so-ever, small these intervals may be.
- Non-uniform motion : The motion of a body is said to be non-uniform if it covers unequal distance in equal intervals of time.
- Speed : The distance travelled by a body in unit time is known as the speed of the body. That is

$$
\text { Speed }=\frac{\text { Distance }}{\text { time }}
$$

- Unit of speed : SI unit of speed is ms^{-1}.
- Uniform speed : If a moving body covers equal distances in equal intervals of time, the speed of the body is uniform.
- Non-Uniform speed : If a moving body covers unequal distances in equal intervals of time, the speed of the body is non-uniform.
- Average speed : The total distance travelled by a body during non-uniform motion divided by the time taken to travel this distance is called average speed.

$$
\text { i.e. Average speed }=\frac{\text { Total distance travelled by body during non }- \text { uniform motion }}{\text { Total time taken }}
$$

-Velocity : The displacement of the body per unit time is known as the velocity of the body. That is,

$$
\text { Velocity }=\frac{\text { Displacement }}{\text { Time }}
$$

- Unit of velocity : SI unit of velocity is ms^{-1}.
- Uniform velocity : Velocity of a body is said to be uniform velocity if it covers equal displacements in equal intervals of time.
- Non-uniform velocity : Velocity of a body is said to be non-uniform if it covers unequal displacement in equal intervals of time.
- Average velocity : $\frac{\text { Totaldisplacement of the body }}{\text { Total time taken }}$
- Speed is a scalar quantity, whereas velocity is a vector quantity.
- Speed of a body is always positive.
- Velocity of body can be positive as well as negative.
- Acceleration : Acceleration of a body is defined as the change in velocity per unit time.
i.e.

$$
\text { Acceleration }=\frac{\text { Changein velocity }}{\text { Time }}
$$

- Positive acceleration : When the velocity of a body increases with time, acceleration of body is said to be positive acceleration.

Or When the change in velocity $(\Delta \mathrm{v})$ of a body takes place in the direction of the motion of the body, then the acceleration of the body positive.

- Negative acceleration or retardation or deceleration : If the velocity of the body decreases with time, then acceleration of body is negative acceleration of retardation.

Or When the change in velocity (Δv) of a body takes place in a direction opposite to the direction of motion of the body, then the acceleration of the body is negative.

- S.I. unit of acceleration is $\mathrm{m} / \mathrm{s}^{2}$
- GRAPH
S.No. State of object/body

1. Rest or stationary
2. Uniform motion

Slope of Distance-time graph

3. Non-uniform motion (speed is increasing)

4. Non-uniform motion (speed is decreasing)

5. Slope or gradient of distance-time graph $=$ speed of body.
6. Area under speed-time graph = distance travelled by a body.

- Velocity-time graph :

S.No. State of object / body

Slope of Velocity-time graph

1. Object is moving with constant velocity
2. Object has uniform motion
(Velocity is increasing at a constant rate)
3. Object has uniform motion
(Velocity is decreasing at a constant rate)

- The slope of velocity-time graph = Acceleration of the body.
- Area under velocity-time graph = magnitude of the displacement of a body.
- Equations of motion :
(i) Velocity of a uniform accelerated body after time t is given by

$$
v=u+a t
$$

(ii) Distance travelled by a uniformly accelerated body after time t is given by

$$
\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}
$$

(iii) $\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{aS}$

- Uniform circular motion : The circular motion of a body having constant speed is known as uniform circular motion.
- Uniform circular motion is accelerated motion.

