Join our Telegram Channel for Free PDF Download

Math Formulas for Class 11 Chapter 5 Complex Numbers and Quadratic Equations

  • Last modified on:1 year ago
  • Reading Time:7Minutes
Home » CBSE Class 11 Maths » Formulas for Class 11 Maths » Math Formulas for Class 11 Chapter 5 Complex Numbers and Quadratic Equations

Math Formulas for Class 11 Chapter 5 Complex Numbers and Quadratic Equations

Imaginary Numbers

The square root of a negative real number is called imaginary number, e.g. \sqrt{-2}, \sqrt{-5}\ etc. The quantity \sqrt{-1}\ is an imaginary unit and it is denoted by ‘ i ‘ called iota.

Integral Power of IOTA(i)

$$
i=\sqrt{-1}, i^2=-1, i^3=-i, i^4=1
$$
So, $$i^{4 n+1}=i, i^{4 n+2}=-1, i^{4 n+3}=-i, i^{4 n}=1$$
– For any two real numbers a and b, the result $$\sqrt{a} \times \sqrt{b}=\sqrt{a b}$$ is true only, when atleast one of the given numbers is either zero or positive. $$\sqrt{-a} \times \sqrt{-b} \neq \sqrt{a b}$$ So, $$i^2=\sqrt{-1} \times \sqrt{-1} \neq 1$$
– ‘ i ‘ is neither positive, zero nor negative.
– Important Result $$i^n+i^{n+1}+i^{n+2}+i^{n+3}=0$$

Algebra of Complex Numbers

Let z_1=x_1+i y_1\ and z_2=x_2+i y_2\ be any two complex numbers.
(i) Addition of Complex Numbers
$$
\begin{aligned}
z_1+z_2 & =\left(x_1+i y_1\right)+\left(x_2+i y_2\right) \\
& =\left(x_1+x_2\right)+i\left(y_1+y_2\right)
\end{aligned}
$$
Properties of addition
– Closure z_1+z_2\ is also a complex number.
– Commutative $$z_1+z_2=z_2+z_1$$
– Associative $$z_1+\left(z_2+z_3\right)=\left(z_1+z_2\right)+z_3$$
– Existence of additive identity
$$
z+0=z=0+z
$$
Note: Here, 0 is additive identity.
– Existence of Additive inverse
$$
z+(-z)=0=(-z)+z
$$
Note: Here, ‘-z’ is additive inverse.
(ii) Subtraction of Complex Numbers
$$
\begin{aligned}
z_1-z_2 & =\left(x_1+i y_1\right)-\left(x_2+i y_2\right) \\
& =\left(x_1-x_2\right)+i\left(y_1-y_2\right)
\end{aligned}
$$

(iii) Multiplication of Complex Numbers
$$
\begin{aligned}
z_1 z_2 & =\left(x_1+i y_1\right)\left(x_2+i y_2\right) \\
& =\left(x_1 x_2-y_1 y_2\right)+i\left(x_1 y_2+x_2 y_1\right)
\end{aligned}
$$
Properties of multiplication
– Closure z_1 z_2 is also a complex number.
– Commutative $$z_1 z_2=z_2 z_1$$
– Associative $$z_1\left(z_2 z_3\right)=\left(z_1 z_2\right) z_3$$
– Existence of multiplicative identity
$$
z \cdot 1=z=1 \cdot z
$$
Here, 1 is multiplicative identity.
– Existence of multiplicative inverse For every non-zero complex number ‘z’, there exists a complex number z_1\ such that z \cdot z_1=1=z_1 \cdot z\
– Distributive law $$z_1\left(z_2+z_3\right)=z_1 z_2+z_1 z_3$$
(iv) Division of Complex Numbers $$\frac{z_1}{z_2}=\frac{x_1+i y_1}{x_2+i y_2}=\frac{\left(x_1 x_2+y_1 y_2\right)+i\left(x_2 y_1-x_1 y_2\right)}{x_2^2+y_2^2}$$ where, z_2 \neq 0\

Conjugate of a Complex Number

Let z=x+i y\, if ‘ i ‘ is replaced by (-i), then it is said to be conjugate of the complex number z and denoted by \bar{z}\, i.e. \bar{z}=x-i y\.
Properties of Conjugate
(i) $$\overline{(\bar{z})}=z$$
(ii) $$z+\bar{z}=2 \operatorname{Re}(z), z-\bar{z}=2 i \operatorname{Im}(z)$$
(iii) if z is purely real $$z=\bar{z}$$
(iv) If z is purely imaginary $$z+\bar{z}=0$$
(v) $$\overline{z_1+z_2}=\bar{z}_1+\bar{z}_2$$
(vi) $$\overline{z_1-z_2}=\bar{z}_1-\bar{z}_2$$
(vii) $$\overline{z_1 z_2}=\bar{z}_1 \cdot \bar{z}_2$$
(viii) $$\overline{\left(\frac{z_1}{z_2}\right)}=\frac{\bar{z}_1}{\bar{z}_2}, \bar{z}_2 \neq 0$$
(ix) $$z \cdot \bar{z}=\{\operatorname{Re}(z)\}^2+\{\operatorname{Im}(z)\}^2$$
(x) $$z_1 \bar{z}_2+\bar{z}_1 z_2=2 \operatorname{Re}\left(\bar{z}_1 z_2\right)=2 \operatorname{Re}\left(z_1 \bar{z}_2\right)$$
(xi) If $$z=f\left(z_1\right)$$, then $$\bar{z}=f\left(\bar{z}_1\right)$$
(xii) $$(\bar{z})^n=\left(\overline{z^n}\right)$$

Modulus (Absolute Value) of a Complex Number

Let z=x+i y\ be a complex number. Then, the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute values) of z and it is denoted by |z| i.e. $$|z|=\sqrt{x^2+y^2}$$

Properties of Modulus
(i) $$|z| \geq 0$$
(ii) If |z|=0\, then z=0 i.e. $$\operatorname{Re}(z)=0=\operatorname{Im}(z)$$
(iii) $$-|z| \leq \operatorname{Re}(z) \leq|z|$$ and $$-|z| \leq \mid \operatorname{Im} z) \leq|z|$$
(iv) $$|z|=|\bar{z}|=|-z|=|-\bar{z}|$$
(v) $$z \cdot \bar{z}=|z|^2$$
(vi) $$\left|z_1 z_2\right|=\left|z_1\right|\left|z_2\right|$$
(vii) $$\left|\frac{z_1}{z_2}\right|=\frac{\left|z_1\right|}{\left|z_2\right|}, z_2 \neq 0$$
(viii) $$\left|z_1+z_2\right|^2=\left|z_1\right|^2+\left|z_2\right|^2+2 \operatorname{Re}\left(z_1 \bar{z}_2\right)$$
(ix) $$\left|z_1-z_2\right|^2=\left|z_1\right|^2+\left|z_2\right|^2-2 \operatorname{Re}\left(z_1 \bar{z}_2\right)$$
(x) $$\left|z_1+z_2\right| \leq\left|z_1\right|+\left|z_2\right|$$
(xi) $$ \left|z_1-z_2\right| \geq\left|z_1\right|-\left|z_2\right|$$

Download CBSE Books

Announcements

Join our Online JEE Test Series for 499/- Only (Web + App) for 1 Year

Join our Online NEET Test Series for 499/- Only for 1 Year

Join Our Telegram Channel

Join our Telegram Channel for Free PDF Download

Download Product Brochure (Editable Study Materials)

Leave a Reply

Join our Telegram Channel for Free PDF Download

Join our Online Test Series for CBSE, ICSE, JEE, NEET and Other Exams

Join Telegram Channel

Editable Study Materials for Your Institute - CBSE, ICSE, State Boards (Maharashtra & Karnataka), JEE, NEET, FOUNDATION, OLYMPIADS, PPTs

Discover more from Gurukul of Excellence

Subscribe now to keep reading and get access to the full archive.

Continue reading