Join our Telegram Channel for Free PDF Download

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4.

  • Polynomials Class 9 Ex 2.1
  • Polynomials Class 9 Ex 2.2
  • Polynomials Class 9 Ex 2.3
  • Polynomials Class 9 Ex 2.4
  • Polynomials Class 9 Ex 2.5
BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 2
Chapter NamePolynomials
Exercise Ex 2.4
Number of Questions Solved5
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

Ex 2.4 Class 9 Maths Question 1.
Determine which of the following polynomials has (x +1) a factor:
(i) x+x2 + 1
(ii) x4 + x3+x2+x+1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 -x2 -(2  \sqrt { 2 } )x +  \sqrt { 2 }
Solution:
The zero of x +1 is -1.
(i) Let p(x) = x3 + x2 + x +1
Then,   p(-1) =  (-1)3 + (-1)2 + (-1) +1
= -1+1-1+1 => p(-1)=   0
So, by the Factor theorem (x +1) is a factor of x3 + x2 + x+1.

(ii)
 Let p(x)= x4 + x3 + x2 + x +1
Then,   p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) +1
=1-1+1-1+1 =>      p(-1) =  1
So, by the.Factor theorem (x +1) is not a factor of x4 + x3 + x2 + x +1

(iii)
 Let p(x) = x4 + 3x3 + 3x2 + x +1
Then,  p(-l) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) +1
=1-3+3-1+1
=>  P(-1) =  1
So, by the Factor theorem (x +1) is not a factor of x4 + 3x3 + 3x2 + x +1

(iv) Let p(x) = x3-x2-(2 +  \sqrt { 2 } )x +  \sqrt { 2 }
Then, p(-1) = (-1)3 – (-1)2 – (2 +  \sqrt { 2 } )(-1) +  \sqrt { 2 }
= —1—1+2 +  \sqrt { 2 } +  \sqrt { 2 }
= 2 \sqrt { 2 }
So, by the Factor theorem (x + 1) is not a factor ofx3 -x2 -(2 +  \sqrt { 2 } x +  \sqrt { 2 }

Ex 2.4 Class 9 Maths Question 2.
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases :
(i) p(x) – 2x3 + x2 -2x-1, g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
(iii) p(x) = x3– 4x2 + x + 6, g(x) = x – 3
Solution:
(i) The zero of g(x) = x +1 is x = -1.
Then,  p(-1)= 2(-1)3 +(-1)2 -2(-1)-1
[∵  p(x) = 2x3 + x2 -2x-1]
= -2 +1+2-1 ⇒ p(-1) = 0
Hence, g(x) is a factor of p(x).

(ii) The zero of g(x) = x + 2 is -2.
Then, p(-2) = (-2)3 + 3(-2)2 + 3(-2) +1
[∵ p(x) = x3 + 3x2 + 3x +1]
= -8+12-6 +1 =>p(-2)=-1
Hence, g(x) is not a factor of p(x).

(iii) The zero of g(x) = x – 3 is 3.
Then,p(3) = 33 – 4(3)2 +3 + 6
[∵ p(x) = x3 – 4x2 + x + 6]
= 27-36 +3 + 6 =»       p(3) = 0
Hence, g(x) is a factor of p(x).

Ex 2.4 Class 9 Maths Question 3.
Find the value of k, if x -1 is a factor of p(x) in each of the following cases:
(i) p(x) = x2+x + k .
(ii) p(x) = 2x2 + kx + V2=
(iii) p(x) = kx2 -42x + 1
(iv) p(x) = kx2 -3x + k
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 7
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 8

Ex 2.4 Class 9 Maths Question 4.
Factorise:
(i) 12x2 – 7x+1
(ii) 2x2+7x+3
(iii) 6x2+5x-6
(iv) 3x2-x-4
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 9
Ex 2.4 Class 9 Maths Question 5.
Factorise:
(i) x3-2x2-x+2
(ii) x3-3x2-9x-5
(iii) x3-13x2+32x+20
(iv) 2y3+y2-2y-1
Solution:
(i) Let p(x) = x3-2x2-x+2, constant term of P(x) is 2.
Factors of 2 are ± 1 and ± 2.
Now,  p(1)=13-2(1)2-1+2
=1-2-1+2
By trial we find that p(l) = 0, so (x -1) is a factor of p(x).
So, x3-2x2-x+2= x3-x2-x2 + x-2x+2
= x2(x-1)-x(x-1)-2(x-1)
= (x—1)(x2 -x-2)
= (x -1)(x2 -2x + x -2)
= (x -1) [x(x -2) + l(x -2)]
= (x-1)(x-2)(x+1)

(ii) Let  p(x)= x3 -3x2 -9x-5
By trial, we find that p(5) = (5)3 – 3(5)2 – 9(5) – 5
= 125 – 75 – 45 – 5 = 0
So, (x – 5) is a factor of p(x).
So, x3-3x2-9x-5=x3-5x2+2x2 -10x + x – 5
= x2 (x – 5) + 2x(x – 5) + 1(x – 5)
= (x – 5) (x2+2x+1)
= (x – 5) (x2 + x + x +1)
= (x + 5) [x(x +1) + 1(x +1)]
= (x-5)(x +1) (x +1)
= (x – 5)(x +1)2

(iii) Let p(x)= x3 +13x2 +32x +20
By trial, we find that p(-1) = (-1)3 +13(-1)2 + 32(-1) + 20
= -1 +13 -32 + 20 = -33 + 33 = 0
So (x +1) is a factor of p(x).
So, x3 + 13x2 + 32x + 20 = x3 + x2 + 12x2 + 12x + 20x + 20
= x2 (x +1) + 12x(x +1) + 20(x +1) = (x+1)(x2 + 12x + 20)
= (x+1)(x2 + 10x + 2x + 20)
= (x +1)[x(x +10) + 2(x +10)]
= (x +l)(x +10)(x + 2)

(iv) Let p(y) = 2y3 + y2 – 2y -1
By trial we find that p(l) = 2(1)3 + (1)2 -2(1) -1,
=2+1-2-1=0 So (y -1) is a factor of p(y).
So, 2y3 + y2 -2y-1 = 2y3 -2y2 +3y2 -3y + y-1
= 2y2(y-1) + 3y(y-1) + 1(y-1)
= (y – 1)(2y2 +3y + 1)
= (y – 1)(2y2 + 2y + y + 1)
= (y -1) [2y(y +1) + l(y +1)
= (y-1)(y+ l)(2y+ 1)

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4, drop a comment below and we will get back to you at the earliest.

Announcements

Join our Online JEE Test Series for 499/- Only (Web + App) for 1 Year

Join our Online NEET Test Series for 499/- Only for 1 Year

Join Our Telegram Channel

Join our Telegram Channel for Free PDF Download

Download Product Brochure (Editable Materials)

1 thought on “NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

Leave a Reply

Join our Telegram Channel for Free PDF Download

Join our Online Test Series for CBSE, ICSE, JEE, NEET and Other Exams

We have started our Telegram Channel to provide PDF of study resources for Board, JEE, NEET and Foundation. Stay Tuned! Click below to join.

Join our Telegram Channel

search previous next tag category expand menu location phone mail time cart zoom edit close