Join our Telegram Channel for Free PDF Download

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5.

  • Polynomials Class 9 Ex 2.1
  • Polynomials Class 9 Ex 2.2
  • Polynomials Class 9 Ex 2.3
  • Polynomials Class 9 Ex 2.4
  • Polynomials Class 9 Ex 2.5
BoardCBSE
TextbookNCERT
ClassClass 9
SubjectMaths
ChapterChapter 2
Chapter NamePolynomials
Exercise Ex 2.5
Number of Questions Solved16
CategoryNCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5

Ex 2.5 Class 9 Maths Question 1.
Use suitable identities to find the following products:
(i) (x+4)(x+10)
(ii) (x+8)(x-10)
(iii) (3x+4)(3x+2x)
(iv) ( { y }^{ 2 }+\cfrac { 3 }{ 2 })(  { y }^{ 2 }-\cfrac { 3 }{ 2 })
(v) (3-2x)(3+2x)
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 19
Ex 2.5 Class 9 Maths Question 2.
Evaluate the following products without multiplying directly:
(i) 103 x 107
(ii) 95 x 96
(iii) 104 x 96
Solution:
(i) 103 x 107 = (100 + 3) (100 + 7)
= (100)2 + (3 + 7) (100) + 3 x 7
= 100 x 100 + (10)(100) + 21
= 10000 +1000 + 21 = 11021

(ii) 95 x 96 = (100 – 5) (100 – 4)
= (100)2 + (-5 – 4)(100) + (-5)(-4) – 100 x 100 + (-9)(100) + 20
= 10000 – 900 + 20 = 9120

(iii) 104 x 96 = (100 + 4)(100 – 4)
= (100)2 – (4)2
= 10000 -16
= 9984

Ex 2.5 Class 9 Maths Question 3.
Factorise the following using appropriate identities :
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y +1
(iii) x2\cfrac { { y }^{ 2 } }{ 100 }
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 18

Ex 2.5 Class 9 Maths Question 4.
Expand each of the following, using suitable identities :
(i) (x + 2y + 4z)2
(ii) (2x -y +z)2
(iii) (-2x + 3y + 2z)2
(iv) (3a – 7b -c)2
(v) (-2x + 5y – 3z)2
(vi) (\cfrac { 1 }{ 4 } a-\cfrac { 1 }{ 2 } b+1)2
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 16
study rankers class 9 maths Chapter 2 Polynomials 15
Ex 2.5 Class 9 Maths Question 5.
Factorise:
(i) 4x2 + 9y2 + I622 + 12xy – 24yz -16xz
(ii) 2x2+ y2 + 822 – 2 \sqrt { 2 }xy + 4 \sqrt { 2 }yz – 8×2
Solution:
(i) 4x2 +9y2 +16z2 +12xy-24yz-16xz
= (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(-4z) + 2(-4z)(2x)
= (2x +3y – 4z)2

(ii) 2x2 + y2 + 8z2 – 2 \sqrt { 2 }xy + 4 \sqrt { 2 }yz-8xz
= (-a \sqrt { 2 }x)2 + (y)2 + (2 \sqrt { 2 }z)2 + (2 –  \sqrt { 2 }x) (y) + 2(y) (2 \sqrt { 2 }z) + 2(2 \sqrt { 2 }z)(- \sqrt { 2 }x)
= (- \sqrt { 2 }x + y + 2 \sqrt { 2 }z)2

Ex 2.5 Class 9 Maths Question 6.
Write the following cubes in expanded form :
(i) (2x+1)3(ii) (2a-3b)3
(iii) (\cfrac { 3 }{ 2 } x+1)3
(iv) (x-\cfrac { 2 }{ 3 } y)3
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 13
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 14
Ex 2.5 Class 9 Maths Question 7.
Evaluate the following using suitable identities :
(i) (99)3
(ii) (102)3
(iii) (998)3
Solution:
study rankers class 9 maths Chapter 2 Polynomials 12

Ex 2.5 Class 9 Maths Question 8.
Factorise each of the following:
(i) 8a3 + b3 + 12a26 + 6ab2
(ii) 8a3 – b3 -12a26 + 6a62
(iii) 27 – 125a3 – 135 a + 225 a64a3
(iv) 27{ p }^{ 3 }-\cfrac { 1 }{ 216 } -\cfrac { 9 }{ 2 } { p }^{ 2 }+\cfrac { 1 }{ 4 } p
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 10
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials 11
Ex 2.5 Class 9 Maths Question 9.
Verify:
(1) x3 + y3 = Or + y)(x2-xy + y2)
(ii) x3-y3 = (x-y)(x2 + xy + y2)
Solution:
(i) We know that,
(x + y)3 = x3 + y3 + 3xy(x + y)
=> x3 + y3 = (x + y)3 -3xy(x + y)
= (x + y)[(x + y)2 -3xy]
= (x + y) [x2 + y2 + 2xy – 3x] = (x + y)[x2 + y2 – xy]
= RHS  Hence proved.

(ii) We know that, (x – y)3 = x3 – y3 -3xy(x – y)
=>x3 – y3 = (x – y)3 + 3xy(x – y)
= (x-y)[(x – y)2 +3xy]
= (x -y)[x2 + y2 -2xy + 3xy]
= (x — y)[x2 + y2 + xy]
= RHS  Hence proved.

Ex 2.5 Class 9 Maths Question 10.
Factorise each of the following:
(i) 27y3 + 125z3
(ii) 64m3 -343n[Hint: See question 9]
Solution:
(i) 27 y3 +125z3 = (3y)3 + (5z)3
= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z) (9 y2 – 15yz + 25z2)

(ii) 64m3 -343n3 = (4m)3 -(7n)3
= (4m-7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)[16m2 + 28mn + 49n2]

Ex 2.5 Class 9 Maths Question 11.
Factorise :
27x3 + y3 + z3 – 9xyz
Solution:
27x3 +y3 +z3 -9xyz = (3x)3 + y3 +z3 -3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z2 – (3x)y – yz -z(3x)]
= (3x + y + z)(9x2 + y2 + z2 -3xy – yz -3zx)

Ex 2.5 Class 9 Maths Question 12.
Verify that
x3 + y3 +z3 -3xyz = \cfrac { 1 }{ 2 }  (x + y + z)[(x -y)2 +(y-z)2 +(z-x)2]
Solution:
We have, x3 + y3 + z3 – 3xyz
= (x + y + z) [x2 + y2 + z2 – xy – yz – zx]
\frac { 1 }{ 2 } (x + y+ z)[2x2 +2y2 +2z2 -2xy-2yz -2zx]
\frac { 1 }{ 2 } (x + y + z)[x2 + x2 + y2 + y2 + z2 + z2 -2xy-2yz-2zx]
\frac { 1 }{ 2 } (x + y + z)[x2 + y2 – 2xy + y2 + z2 -2yz + z2 + x2 – 2zx]
\frac { 1 }{ 2 } (x + y + z)[(x-y)2 + (y-z)2 +(z-x)2]

Ex 2.5 Class 9 Maths Question 13.
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Solution:
We know that,
x3 +y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz-zx)
= 0(x2 + y2 + z2 – xy- yz-zx) (∵ x + y + z = 0 given)
= 0
=> x3 + y3 + z3 = 3xyz        Hence proved.

Ex 2.5 Class 9 Maths Question 14.
Without actually calculating the cubes, find the value of each of the following: 
(i) (-12)3 + (7)3 + (5)3
(ii) (28)3 + (-15)3 + (-13)3.
Solution:
(i) We know that, x3 + y3 + z3 – 3xyz
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
Also, we know that, if
x + y + z = 0
Then, x3 + y3 +z3 = 3 xyz
Given expression is (-12)3 + (7)3 + (5)3.
Here,            -12 + 7 + 5=0
∴ (-12)3 + (7)3 + (5)3 = 3 x (-12) x 7 x 5 = -1260

(ii)
 Given expression is (28)3 + (-15)3 + (-13)3
Here, 28 + (-15) + (-13) = 28 -15-13 = 0
∴  (28)3 + (-15)3 + (-13)3 = 3 x (28) x (-15) x (-13) = 16380

Ex 2.5 Class 9 Maths Question 15.
Give possible expressions for the length and the breadth of each of the following rectangles, in which their areas are given :
(i) Area = 25a2 – 35a + 12
(ii) Area = 35y2 + 13y – 12.
Solution:
(i) We have,
Area of rectangle = 25a2 – 35a +12 [by splitting the middle term]
= 25a2 -20a-15a+12
= 5a(5a – 4) – 3(5a – 4)
= (5a-4)(5a-3)
Hence, possible expression for length = (5a – 3) and possible expression for breadth = (5a – 4)

(ii) We have,
Area of rectangle = 35y+ 13y -12
= 35y2 + (28 – 15)y -12
= 35y2 + 28y-15y-12
= (35y2 +28y)-(15y + 12)
= 7y(5y + 4) – 3(5y + 4)
= (7y – 3) (5y + 4)

Ex 2.5 Class 9 Maths Question 16.
What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume = 3x2 – 12x
(ii) Volume = 12ky2 + 8ky – 20k.
Solution:
(i) We have,
Volume of cuboid = 3x2 -12x = 3x(x – 4)
So, the possible expressions for the dimensions of the cuboids are 3, x and x – 4.
[∵ volume of cuboid = length x breadth x height]

(ii) We have,
Volume of cuboid = 12ky2 + 8ky – 20k = 12ky2 + (20 -12)ky – 20k [by splitting the middle term]
= 12ky2 + 20 ky – 12ky – 20 k = 4ky(3y + 5) – 4k(3y + 5) = (3y + 5)(4ky – 4k)
= (3y + 5)4k(y -1) = 4k(3y + 5)(y -1)
So, the possible expressions for the dimensions of the cuboid are 4 k, 3y + 5 and y -1.

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5, drop a comment below and we will get back to you at the earliest.

Announcements

Join our Online JEE Test Series for 499/- Only (Web + App) for 1 Year

Join our Online NEET Test Series for 499/- Only for 1 Year

Join Our Telegram Channel

Join our Telegram Channel for Free PDF Download

Download Product Brochure (Editable Materials)

1 thought on “NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5

Leave a Reply

Join our Telegram Channel for Free PDF Download

Join our Online Test Series for CBSE, ICSE, JEE, NEET and Other Exams

We have started our Telegram Channel to provide PDF of study resources for Board, JEE, NEET and Foundation. Stay Tuned! Click below to join.

Join our Telegram Channel

search previous next tag category expand menu location phone mail time cart zoom edit close